题文
已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.试问:k取何值时,△ABC是以BC为斜边的直角三角形? |
题型:解答题 难度:中档
答案
设边AB=a,AC=b ∵a、b是方程x2-(2k+3)x+k2+3k+2=0的两根 ∴a+b=2k+3,a?b=k2+3k+2 又∵△ABC是以BC为斜边的直角三角形,且BC=5 ∴a2+b2=52, 即(a+b)2-2ab=52, ∴(2k+3)2-2(k2+3k+2)=25 ∴k2+3k-10=0 ∴k1=-5或k2=2 当k=-5时,方程为:x2+7x+12=0 解得:x1=-3,x2=-4(舍去) 当k=2时,方程为:x2-7x+12=0 解得:x1=3,x2=4 ∴当k=2时,△ABC是以BC为斜边的直角三角形. |
据专家权威分析,试题“已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+..”主要考查你对 一元二次方程的解法,一元二次方程根与系数的关系,勾股定理 等考点的理解。关于这些考点的“档案”如下:
一元二次方程的解法一元二次方程根与系数的关系勾股定理
考点名称:一元二次方程的解法 考点名称:一元二次方程根与系数的关系 考点名称:勾股定理
|