零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根与系数的关系 > 正文 返回 打印

已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2.(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.-九年级数学

[db:作者]  2019-04-26 00:00:00  互联网

题文

已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2
(1)求m的取值范围;
(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
题型:解答题  难度:中档

答案

解:(1)将原方程整理为 x2 + 2(m-1)x + m2 = 0.
∵ 原方程有两个实数根,
∴ △= [ 2(m-1)2-4m2 =-8m + 4≥0,
得 m≤
(2) ∵ x1,x2为x2 + 2(m-1)x + m2 = 0的两根,
∴ y = x1 + x2 = -2m + 2,且m≤
因而y随m的增大而减小,故当m=时,取得极小值1

据专家权威分析,试题“已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2.(1)求..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0



http://www.00-edu.com/ks/shuxue/2/108/2019-04-26/1095205.html十二生肖
十二星座