题文
答案
据专家权威分析,试题“给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩..”主要考查你对 一元二次方程根与系数的关系,相似多边形的性质 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系相似多边形的性质
考点名称:一元二次方程根与系数的关系
一元二次方程根与系数关系的推论:1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0提示:①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
考点名称:相似多边形的性质
相似多边形:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比。(或相似系数)判定:如果对应角相等,对应边成比例的多边形是相似多边形.如果所有对应边成比例,那么这两个多边形相似