题文
答案
据专家权威分析,试题“△ABC的一边为5,另外两边的长恰好是方程2x2﹣12x+m=0的两个根,则..”主要考查你对 一元二次方程根与系数的关系,三角形的三边关系 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系三角形的三边关系
考点名称:一元二次方程根与系数的关系
一元二次方程根与系数关系的推论:1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0提示:①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
考点名称:三角形的三边关系
三角形的三边关系:在三角形中,任意两边和大于第三边,任意两边差小于第三边。设三角形三边为a,b,c则a+b>ca+c>bb+c>aa-b<ca-c<bb-c<a在直角三角形中,设a、b为直角边,c为斜边。则两直角边的平方和等于斜边平方。在等边三角形中,a=b=c在等腰三角形中, a,b为两腰,则a=b在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc
三角形的三边关系定理及推论:(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系。