题文
答案
据专家权威分析,试题“三角形的一边是10,另两边是一元二次方程的x2-14x+48=0的两个根,..”主要考查你对 一元二次方程根与系数的关系,勾股定理的逆定理 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系勾股定理的逆定理
考点名称:一元二次方程根与系数的关系
一元二次方程根与系数关系的推论:1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0提示:①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
考点名称:勾股定理的逆定理
勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形。 勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。若c为最长边,且a2+b2=c2,则△ABC是直角三角形。如果a2+b2>c2,则△ABC是锐角三角形。如果a2+b2<c2,则△ABC是钝角三角形。由于余弦定理是由勾股定理推出的,故可以用来证明其逆定理而不算循环论证。勾股定理的逆定理是判定三角形是不是直角三角形的重要方法。