零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根与系数的关系 > 正文 返回 打印

我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+ax1x2,故有b=-a(x1+x2),c=ax1x2,即得x1+x2=-ba,x1x2=ca.根-数学

[db:作者]  2019-04-27 00:00:00  互联网

题文

我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根,则有ax2+bx+c=a(x-x1)(x-x2)=ax2-a(x1+x2)x+ax1x2,故有b=-a(x1+x2),c=ax1x2,即得x1+x2=-
b
a
,x1x2=
c
a

根据上述内容,若实系数方程ax3+bx2+cx+d=0(a≠0)的三个实数根分别是x1、x2、x3,则x1+x2+x3=______; x1x2x3=______.
题型:填空题  难度:中档

答案

根据题意可得
ax3+bx2+cx+d
=a(x-x1)(x-x2)(x-x3
=a(x2-xx1-xx2+x1x2)(x-x3
=a(x3-x2x1-x2x2+xx1x2-x2x3+xx1x3+xx2x3-x1x2x3
=ax3-a(x1+x2+x3)x2+a(x1x2+x1x3+x2x3)x-ax1x2x3
∴b=-a(x1+x2+x3),d=-ax1x2x3
即得x1+x2+x3=-
b
a
,x1x2x3=-
d
a

故答案为:-
b
a
,-
d
a

据专家权威分析,试题“我们知道,对于实系数方程ax2+bx+c=0(a≠0),若x1、x2是其两实数根..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0



http://www.00-edu.com/ks/shuxue/2/108/2019-04-27/1097448.html十二生肖
十二星座