题文
已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β. (1)试用含有α、β的代数式表示p、q; (2)求证:α≤1≤β; (3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(,1),C(1,1),问是否存在点M,使p+q=?若存在,求出点M的坐标;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
(1)∵α、β为方程x2-(p+q+1)x+p=0(q≥0)的两个实数根, ∴判别式△=(p+q+1)2-4p=(p+q-1)2+4q≥0, 且α+β=p+q+1,αβ=p, 于是p=αβ, q=α+β-p-1=α+β-αβ-1; (2)∵(1-a)(1-β)=1-(α+β)+αβ=-q≤0(q≥0), 又α≤β, ∴a≤1≤β; (3)若使p+q=成立,只需α+β=p+q+1=, ①当点M(α,β)在BC边上运动时, 由B(,1),C(1,1), 得≤α≤1,β=1, 而α=-β=-1=>1, 故在BC边上存在满足条件的点,其坐标为(,1)所以不符合题意舍去; 即在BC边上不存在满足条件的点 ②当点M(α,β)在AC边上运动时, 由A(1,2),C(1,1), 得a=1,1≤β≤2, 此时β=-α=-1=, 又因为1<<2, 故在AC边上存在满足条件的点,其坐标为(1,); ③当点M(α,β)在AB边上运动时, 由A(1,2),B(,1), 得≤α≤1,1≤β≤2, 由平面几何知识得=, 于是β=2α, 由解得α=,β=, 又因为<<1,1<<2, 故在AB边上存在满足条件的点,其坐标为(,). 综上所述,当点M(α,β)在△ABC的三条边上运动时,存在点(1,)和点(,),使p+q=成立. |
据专家权威分析,试题“已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β..”主要考查你对 一元二次方程根与系数的关系,一元二次方程根的判别式,相似三角形的判定,用坐标表示位置 等考点的理解。关于这些考点的“档案”如下:
一元二次方程根与系数的关系一元二次方程根的判别式相似三角形的判定用坐标表示位置
考点名称:一元二次方程根与系数的关系 考点名称:一元二次方程根的判别式 考点名称:相似三角形的判定 考点名称:用坐标表示位置
|