零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根与系数的关系 > 正文 返回 打印

已知:梯形ABCD中,AD∥BC,AD=1,BD过梯形的高AE的中点F,且BD⊥DC,设AE=h,BC=a.(1)用含字母h的代数式表示a;(2)若a、h是关于x的一元二次方程3x2-3(m+2)x+10m=0的两根,求si-数学

[db:作者]  2019-04-27 00:00:00  互联网

题文

已知:梯形ABCD中,AD∥BC,AD=1,BD过梯形的高AE的中点F,且BD⊥DC,设AE=h,BC=a.
(1)用含字母h的代数式表示a;
(2)若a、h是关于x的一元二次方程3x2-3(m+2)x+10m=0的两根,求sin∠DBC的值.
题型:解答题  难度:中档

答案

(1)根据题意,AD∥BC,且AF=EF;
易得Rt△AFD≌Rt△EFB,故BF=FD,BE=1;且EF=
h
2

由勾股定理可得:BF=

1+
h2
4

又可得AD=2AF;
Rt△BEF与Rt△BDC中,有∠BEF=∠BDC=90°,∠B=∠B;
故Rt△BEF∽Rt△BDC,进而可得
BE
BF
=
BD
BC

化简可得:a=2(1+
h2
4
);即a=2+
h2
2


(2)若a、h是关于x的一元二次方程3x2-3(m+2)x+10m=0的两根,
则a+h=m+2,ah=
10m
3

又有a=2+
h2
2

解得a=10,h=4;
DC=

BC2-BD2
=8;
易得sin∠DBC=
DC
BC
=
4
5

据专家权威分析,试题“已知:梯形ABCD中,AD∥BC,AD=1,BD过梯形的高AE的中点F,且BD⊥DC..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0



http://www.00-edu.com/ks/shuxue/2/108/2019-04-27/1097958.html十二生肖
十二星座