零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根的判别式 > 正文 返回 打印

有四张卡片(背面完全相同),分别写有数字1、2、-1、-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别-数学

[db:作者]  2019-04-29 00:00:00  零零社区

题文

有四张卡片(背面完全相同),分别写有数字1、2、-1、-2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
题型:解答题  难度:中档

答案

(1)列表得:
(1,-2) (2,-2) (-1,-2) (-2,-2)
(1,-1) (2,-1) (-1,-1) (-2,-1)
(1,2) (2,2) (-1,2) (-2,2)
(1,1) (2,1) (-1,1) (-2,1)
∴一共有16种等可能的结果,
∵关于x的方程x2+bx+c=0有实数解,即 b2-4c≥0,
∴关于x的方程x2+bx+c=0有实数解的有(1,-1),(1,-2),(2,1),(2,-1),(2,-2),(-1,-1),(-1,-2),(-2,1),(-2,-1),(-2,-2)共10种情况,
∴关于x的方程x2+bx+c=0有实数解的概率为:
10
16
=
5
8


(2)(1)中方程有两个相等实数解的有(-2,1),(2,1),
∴(1)中方程有两个相等实数解的概率为:
2
16
=
1
8

据专家权威分析,试题“有四张卡片(背面完全相同),分别写有数字1、2、-1、-2,把它们背..”主要考查你对  一元二次方程根的判别式,列举法求概率  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式列举法求概率

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。



http://www.00-edu.com/ks/shuxue/2/110/2019-04-29/1105554.html十二生肖
十二星座