零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根的判别式 > 正文 返回 打印

设a、b为两圆半径,c为圆心距,且方程x2-2ax+b2=c(b-a)有两个相等的实数根,则这两个圆()A.相交B.内切C.相等D.相等或外切-数学

[db:作者]  2019-04-29 00:00:00  零零社区

题文

设a、b为两圆半径,c为圆心距,且方程x2-2ax+b2=c(b-a)有两个相等的实数根,则这两个圆(  )
A.相交B.内切C.相等D.相等或外切
题型:单选题  难度:偏易

答案

由题意得,△=4a2-4(b2-bc+ac)=4a2-4b2+4bc-4ac=0,
即(a-b)(4a+4b-4c)=0,
∴a-b=0,或4a+4b-4c=0,
∴a=b,或4c=4a+4b,即c=a+b,
∴这两个圆相等或外切.
故选D.

据专家权威分析,试题“设a、b为两圆半径,c为圆心距,且方程x2-2ax+b2=c(b-a)有两个相等..”主要考查你对  一元二次方程根的判别式,圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

考点名称:圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

  • 圆和圆的位置关系:
    如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
    如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
    如果两个圆有两个公共点,那么就说这两个圆相交。

    圆心距:两圆圆心的距离叫做两圆的圆心距。

  • 圆和圆位置关系的性质与判定:
    设两圆的半径分别为R和r,圆心距为d,那么
    两圆外离d>R+r(没有交点)
    两圆外切d=R+r (有一个交点,叫切点)
    两圆相交R-r<d<R+r(R≥r)(有两个交点)
    两圆内切d=R-r(R>r) (有一个交点,叫切点)
    两圆内含d<R-r(R>r)(没有交点)

    两圆相切的性质:
    (1)连心线:两圆圆心的连线。
    (2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。



http://www.00-edu.com/ks/shuxue/2/110/2019-04-29/1105709.html十二生肖
十二星座