零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元二次方程根的判别式 > 正文 返回 打印

对于一元二次方程ax2+bx+c=O(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=O必有实数根;②若b2+4ac<0,则方程ax2+bx+c=O一定有实数根;③若a-b+c=0,则方程ax2+bx+c=O一定有两个不-数学

[db:作者]  2019-04-29 00:00:00  互联网

题文

对于一元二次方程ax2+bx+c=O(a≠0),下列说法:
①若a+c=0,方程ax2+bx+c=O必有实数根;
②若b2+4ac<0,则方程ax2+bx+c=O一定有实数根;
③若a-b+c=0,则方程ax2+bx+c=O一定有两个不等实数根;
④若方程ax2+bx+c=O有两个实数根,则方程cx2+bx+a=0一定有两个实数根.
其中正确的是(  )
A.①②B.①③C.②③D.①③④
题型:单选题  难度:中档

答案

①∵a+c=0,
∴a=-c,
∴b2-4ac=b2+4c2≥0,
故方程有实数根;故①正确.
②∵b2+4ac<0
∴4ac<0,
∴-4ac>0
∴b2-4ac>0,
故方程ax2+bx+c=O一定有实数根,故②正确;
③∵a-b+c=0,
∴b=a+c,
∴b2-4ac
=(a+c)2-4ac
=(a-c)2≥0,
故方程有实数根,但不一定有两个实数根.
故③错误.
④若方程ax2+bx+c=O有两个实数根,
但c可能等于0,当c=0时,
方程cx2+bx+a=0会变为一元一次方程,
此时只有一个实数根.
故④错误.
故选A.

据专家权威分析,试题“对于一元二次方程ax2+bx+c=O(a≠0),下列说法:①若a+c=0,方程ax2+..”主要考查你对  一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。



http://www.00-edu.com/ks/shuxue/2/110/2019-04-29/1105880.html十二生肖
十二星座