零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 概率的意义 > 正文 返回 打印

某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C三种不同的型号,乙品牌计算器有D,E两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算-七年级数学

[db:作者]  2019-05-10 00:00:00  零零社区

题文

某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C三种不同的型号,乙品牌计算器有D,E两种不同的型号,新华中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.
(1)写出所有的选购方案(利用树状图或列表方法表示);
(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号计算器被选中的概率是多少?
(3)现知新华中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为A型号计算器,求购买的A型号计算器有多少个?
题型:解答题  难度:中档

答案

解:(1)树状图表示如下:

列表如下:

有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E); (2)因为选中A型号计算器有2种方案,即(A,D),(A,E),
所以A型号计算器被选中的概率是
(3)由(2)可知,当选用方案(A,D)时,设购买A型号,D型号计算器分别为x,y个,根据题意,得
解得
经检验不符合题意,舍去,
当选用方案(A,E)时,设购买A型号、E型号计算器分别为x,y个,
根据题意,得
解得
所以新华中学购买了5个A型号计算器.

据专家权威分析,试题“某公司现有甲、乙两种品牌的计算器,甲品牌计算器有A,B,C三种不..”主要考查你对  概率的意义,二元一次方程组的应用  等考点的理解。关于这些考点的“档案”如下:

概率的意义二元一次方程组的应用

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。



http://www.00-edu.com/ks/shuxue/2/113/2019-05-10/1115974.html十二生肖
十二星座