零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 概率的意义 > 正文 返回 打印

如图,D,E分别是线段AB,AC上的点,BE与CD相交于点P.有如下三个关系式:①∠B=∠C;②AB=AC;③BE=CD.小题1:请你用其中两个关系式为条件,另一个为结论,写出一个你认为正确的命题-七年级数学

[db:作者]  2019-05-10 00:00:00  互联网

题文

如图,D,E分别是线段AB,AC上的点,BE与CD相交于点P.有如下三个关系式:①∠B=∠C;②AB=AC;③BE=CD.

小题1:请你用其中两个关系式为条件,另一个为结论,写出一个你认为正确的命题:如果∠B=∠C,AB=AC          ,那么BE=CD             ;(不用序号表示)并证明。
小题2:以其中任意两个关系式为条件,另一个为结论构成真命题的概率是:         23.

题型:解答题  难度:偏易

答案


小题1:AB=AC,∠B=∠CBE=CD或∠B=∠C,BE=CD,AB=AC.(2分)
小题2:根据题意,各种组合有:
①已知∠B=∠C,AB=AC;求证:BE=CD.
证明:∵∠B=∠C,AB=AC,∠A=∠A,
∴△ACD≌△ABE,
∴BE=CD.
②已知:AB=AC,BE=CD;求证:∠B=∠C.
证明:∵AB=AC,BE=CD,∠A=∠A,
∴根据SSA,不能证明△ACD≌△ABE.
故不能证明:∠B=∠C.
③已知:∠B=∠C,BE=CD;求证:AB=AC.
证明:∵∠A=∠A,∠B=∠C,BE=CD,
∴△ACD≌△ABE.
∴AB=AC.         (3分)
根据概率公式,P=.(2分)

(1)根据全等三角形的判定定理得出三角形全等,再由全等三角形的性质即可得出结论;
(2)根据题意写出所有命题,再得到所有真命题,根据概率公式即可解答.故答案为

据专家权威分析,试题“如图,D,E分别是线段AB,AC上的点,BE与CD相交于点P.有如下三个..”主要考查你对  概率的意义,随机事件,必然事件,列举法求概率  等考点的理解。关于这些考点的“档案”如下:

概率的意义随机事件必然事件列举法求概率

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:随机事件

  • 随机事件:
    事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
    在一定条件下,可能发生也可能不发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:随机事件A的概率为0<P(A)<1。

  • 随机事件特点:
    1.可以在相同的条件下重复进行;
    2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
    3.进行一次试验之前不能确定哪一个结果会出现。
    注意:
    ①随机事件发生与否,事先是不能确定的;
    ②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
    ③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。

考点名称:必然事件

  • 必然事件:
    事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件。
    在一定的条件下,一定发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。必然事件的概率为1。

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。



http://www.00-edu.com/ks/shuxue/2/113/2019-05-10/1119818.html十二生肖
十二星座