题文
一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:
解答下列问题: (1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概 率附近.试估计出现“和为7”的概率; (2)根据(1),若x是不等于2、3、4的自然数,试求x的值. |
题型:解答题 难度:中档
答案
(1) 出现和为7的概率是:0.33(或0.31, 0.32,0.34均正确) (2) 列表格(见右边)或树状图,一共有12种可能的结果, 由(1)知,出现和为7的概率约为0.33 ∴和为7出现的次数为0.33×12=3.96≈4(用另外三个概率估计值说明亦可) 若2+x=7,则x=5,此时P(和为7)=≈0.33, 符合题意. 若3+x=7,则 x=4,不符合题意. 若4+x=7,则 x=3,不符合题意. 所以x=5. (说理方法多种,只要说理、结果正确均可)
|
(1)由于大量试验中“和为7”出现的频数稳定在0.3附近,据图表,可估计“和为7”出现的概率为3.1,3.2,3.3等均可; (2)先列表格或树状图得到所有可能的结果,再对表中数据进行分析即可得到结果。 |
据专家权威分析,试题“一只不透明的袋子中装有4个小球,分别标有数字2、3、4、x,这些球..”主要考查你对 概率的意义,随机事件,必然事件,列举法求概率 等考点的理解。关于这些考点的“档案”如下:
概率的意义随机事件必然事件列举法求概率
考点名称:概率的意义 考点名称:随机事件 考点名称:必然事件 考点名称:列举法求概率
|