零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 列举法求概率 > 正文 返回 打印

有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗后摸出一张,放回洗后再摸出一张.求:两次摸出的牌面图形都既是中心对称-数学

[db:作者]  2019-05-18 00:00:00  互联网

题文

有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗后摸出一张,放回洗后再摸出一张.求:两次摸出的牌面图形都既是中心对称图形又是轴对称图形的纸牌的概率.


题型:解答题  难度:中档

答案





共有16种可能的结果,其中既是中心对称图形又是轴对称图形的只有一种:(BB),每种出现的可能性相等.
P(都既是中心对称图形又是轴对称图形)=
1
16

据专家权威分析,试题“有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何..”主要考查你对  列举法求概率,轴对称,中心对称  等考点的理解。关于这些考点的“档案”如下:

列举法求概率轴对称中心对称

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:中心对称

  • 中心对称的定义:
    把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么说这两个图形关于这个点中心对称,这个点叫做对称中心。
    中心对称图形的定义:
    在平面内,一个图形绕着某一个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  • 中心对称的性质:
    ①关于中心对称的两个图形是全等形。
    ②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
    ③关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

    中心对称的判定:
    如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 

  • 中心对称与中心对称图形的联系: 
    中心对称和中心对称图形是两个不同而又紧密联系的概念。
    区别是:
    中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称。成中心对称的两个图形中,其中一个图形上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;
    而中心对称图形是指一个图形本身成中心对称。中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称。
    也就是说:
    ① 中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形。
    ②中心对称:如果把一个图形绕某一点旋转180度后能与另一个图形重合,这两个图形成中心对称。



http://www.00-edu.com/ks/shuxue/2/114/2019-05-18/1124496.html十二生肖
十二星座