零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二次函数的定义 > 正文 返回 打印

已知抛物线y=x2+(m+1)x+m,根据下列条件,分别求出m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为直线x=2;(4)若抛物线在x轴上截得的线段长为2-数学

[db:作者]  2019-05-20 00:00:00  零零社区

题文

已知抛物线y=x2+(m+1)x+m,根据下列条件,分别求出m的值.
(1)若抛物线过原点;
(2)若抛物线的顶点在x轴上;
(3)若抛物线的对称轴为直线x=2;
(4)若抛物线在x轴上截得的线段长为2.
题型:解答题  难度:中档

答案

(1)∵抛物线过原点,
∴m=0;

(2)∵抛物线的顶点在x轴上,
4×1×m-(m+1)2
4
=0,
解得m=1;

(3)∵抛物线的对称轴为直线x=2,
∴-
m+1
2
=2,
解得m=-5;

(4)令y=0,则x2+(m+1)x+m=0,
解得x1=-1,x2=-m,
∵抛物线在x轴上截得的线段长为2,
∴|m-1|=2,
∴m-1=2或m-1=-2,
解得m=3或m=-1.

据专家权威分析,试题“已知抛物线y=x2+(m+1)x+m,根据下列条件,分别求出m的值.(1)若抛..”主要考查你对  二次函数的定义,二次函数与一元二次方程  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数与一元二次方程

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 二次函数的解析式有三种形式:
    (1)一般式:(a,b,c是常数,a≠0);
    (2)顶点式: (a,h,k是常数,a≠0)
    (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:
    ①函数的关系式是整式;
    ②自变量的最高次数是2;
    ③二次项系数不等于零。

  • 二次函数的判定:
    二次函数的一般形式中等号右边是关于自变量x的二次三项式;
    当b=0,c=0时,y=ax2是特殊的二次函数;
    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。

考点名称:二次函数与一元二次方程

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
    3、相互关系:
    二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
    如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。



http://www.00-edu.com/ks/shuxue/2/117/2019-05-20/1128939.html十二生肖
十二星座