题文
已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与 x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式; (2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由; (3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积. |
题型:解答题 难度:偏易
答案
(1)y=x2-1. (2)直线l与⊙A相切 (3) |
(1)因为当x=3和x=-3时,这条抛物线上对应点的纵坐标相等,故b=0. 设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=ax2+bx+c,得 解得 ∴这条抛物线的解析式为y=x2-1. 设直线AB的解析式为y=kx+b,把A(-4,3)、B(2,0)代入到y=kx+b,得 解得 ∴这条直线的解析式为y=-x+1. (2)依题意,OA=即⊙A的半径为5. 而圆心到直线l的距离为3+2=5. 即圆心到直线l的距离=⊙A的半径, ∴直线l与⊙A相切. (3)由题意,把x=-1代入y=-x+1,得y=,即D(-1,). 由(2)中点A到原点距离跟到直线y=-2的距离相等,且当点A成为抛物线上一个动点时,仍然具有这样的性质,于是过点D作DH⊥直线l于H,交抛物线于点P,此时易得DH是D点到l最短距离,点P坐标(-1,-)此时四边形PDOC为梯形,面积为. |
据专家权威分析,试题“已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|