题文
如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.
(1)要使鸡场面积最大,鸡场的长度应为多少m? (2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论? |
题型:解答题 难度:偏易
答案
(1)依题意得鸡场面积y=- ∵y=-x2+x=(x2-50x) =-(x-25)2+, ∴当x=25时,y最大=, 即鸡场的长度为25 m时,其面积最大为m2. (2)如中间有几道隔墙,则隔墙长为m. ∴y=·x=-x2+x =-(x2-50x) =-(x-25)2+, 当x=25时,y最大=, 即鸡场的长度为25 m时,鸡场面积为 m2. 结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m. |
据专家权威分析,试题“如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|