题文
已知抛物线:的顶点在坐标轴上. (1)求的值; (2)时,抛物线向下平移个单位后与抛物线:关于轴对称,且过点,求的函数关系式; (3)时,抛物线的顶点为,且过点.问在直线上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由. |
题型:解答题 难度:中档
答案
.解:当抛物线的顶点在轴上时
解得或 ………………………………1分 当抛物线的顶点在轴上时
∴ ………………………………2分 综上或. (2)当时, 抛物线为. 向下平移个单位后得到 抛物线与抛物线: 关于轴对称 ∴,, …………………………………3分 ∴抛物线: ∵过点 ∴,即……………………………………4分 解得(由题意,舍去)∴ ∴抛物线: . ………………………………………………5分 (3)当时 抛物线: 顶点 ∵过点 ∴ ∴ ………………6分 作点关于直线的对称点 直线的解析式为 ∴ ………………………………………7分 |
据专家权威分析,试题“已知抛物线:的顶点在坐标轴上.(1)求的值;(2)时,抛物线向下平移..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|