题文
(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F. (1)当t≠1时,求证:△PEQ≌△NFM; (2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值. |
题型:解答题 难度:中档
答案
解:(1)∵四边形ABCD是正方形 ∴∠A=∠B=∠D=90°,AD=AB ∵QE⊥AB,MF⊥BC ∴∠AEQ=∠MFB=90° ∴四边形ABFM、AEQD都是矩形 ∴MF=AB,QE=AD,MF⊥QE 又∵PQ⊥MN ∴∠EQP=∠FMN 又∵∠QEP=∠MFN=90° ∴△PEQ≌△NFM. (2)∵点P是边AB的中点,AB=2,DQ=AE=t ∴PA=1,PE=1-t,QE=2 由勾股定理,得PQ== ∵△PEQ≌△NFM ∴MN=PQ= 又∵PQ⊥MN ∴S===t2-t+ ∵0≤t≤2 ∴当t=1时,S最小值=2. 综上:S=t2-t+,S的最小值为2. |
据专家权威分析,试题“(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|