题文
(14分)如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1, y1)和N(x2,y2)两点(其中x1<0,x2<0). ⑴求b的值. ⑵求x1?x2的值 ⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论. ⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由. |
题型:解答题 难度:中档
答案
解:⑴b=1 ⑵显然和是方程组的两组解,解方程组消元得,依据“根与系数关系”得=-4 ⑶△M1FN1是直角三角形是直角三角形,理由如下: 由题知M1的横坐标为x1,N1的横坐标为x2,设M1N1交y轴于F1,则F1M1?F1N1=-x1?x2=4,而FF1=2,所以F1M1?F1N1=F1F2,另有∠M1F1F=∠FF1N1=90°,易证Rt△M1FF1∽Rt△N1FF1,得∠M1FF1=∠FN1F1,故∠M1FN1=∠M1FF1+∠F1FN1=∠FN1F1+∠F1FN1=90°,所以△M1FN1是直角三角形. ⑷存在,该直线为y=-1.理由如下: 直线y=-1即为直线M1N1. 如图,设N点横坐标为m,则N点纵坐标为,计算知NN1=, NF=,得NN1=NF 同理MM1=MF. 那么MN=MM1+NN1,作梯形MM1N1N的中位线PQ,由中位线性质知PQ=(MM1+NN1)=MN,即圆心到直线y=-1的距离等于圆的半径,所以y=-1总与该圆相切. |
据专家权威分析,试题“(14分)如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|