题文
(2011贵州安顺,27,12分)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0). 27 ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值. |
题型:解答题 难度:中档
答案
(1)∵点A(-1,0)在抛物线y=x2 + bx-2上,∴× (-1 )2 + b× (-1) –2 = 0,解得b = ∴抛物线的解析式为y=x2-x-2. y=x2-x-2 = ( x2 -3x- 4 ) =(x-)2-, ∴顶点D的坐标为 (, -). (2)当x = 0时y =" -2, " ∴C(0,-2),OC = 2。 当y = 0时, x2-x-2 = 0, ∴x1 =" -1," x2 =" 4, " ∴B (4,0) ∴OA =" 1, " OB =" 4, " AB = 5. ∵AB2 =" 25, " AC2 = OA2 + OC2 =" 5, " BC2 = OC2 + OB2 = 20, ∴AC2 +BC2 = AB2. ∴△ABC是直角三角形. (3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小。
解法一:设抛物线的对称轴交x轴于点E. ∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM ∴△C′OM∽△DEM. ∴ ∴,∴m =. 解法二:设直线C′D的解析式为y = kx + n , 则,解得n =" 2," . ∴ . ∴当y = 0时, , . ∴. |
据专家权威分析,试题“(2011贵州安顺,27,12分)如图,抛物线y=x2+bx-2与x轴交于A、B两..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|