题文
(11·天水)(10分)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°, OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边 长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向 左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止. (1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函 数关系式. (2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是 否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值; 若不存在,请说明理由. |
题型:解答题 难度:中档
答案
解:(1)△DEF是边长为2的等边三角形,在梯形OABC中, OC=2,BC=4,∠AOC=60°,AB⊥x轴 ∵射线DF与抛物线的交点在x轴上方 |
略 |
据专家权威分析,试题“(11·天水)(10分)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|