题文
(9分)已知二次函数的图象与x轴相交于A、B两点(A 左B右),与y轴相交于点C,顶点为D. (1)求m的取值范围; (2)当点A的坐标为,求点B的坐标; (3)当BC⊥CD时,求m的值. |
题型:解答题 难度:中档
答案
解:(1)∵二次函数的图象与x轴相交于A、B两点 ∴b2-4ac>0,∴4+4m>0,······································································· 2分 解得:m>-1························································································· 3分 (2)解法一: ∵二次函数的图象的对称轴为直线x=-=1························· 4分 ∴根据抛物线的对称性得点B的坐标为(5,0)··············································· 6分 解法二: 把x=-3,y=0代入中得m="15···············································" 4分 ∴二次函数的表达式为 令y=0得········································································ 5分 解得x1=-3,x2=5 ∴点B的坐标为(5,0)··········································································· 6分 (3)如图,过D作DE⊥y轴,垂足为E.
∴∠DEC=∠COB=90°, 当BC⊥CD时,∠DCE +∠BCO=90°, ∵∠DEC=90°,∴∠DCE +∠EDC=90°,∴∠EDC=∠BCO. ∴△DEC∽△COB,∴=.····························································· 7分 由题意得:OE=m+1,OC=m,DE=1,∴EC=1.∴=. ∴OB=m,∴B的坐标为(m,0).······························································ 8分 将(m,0)代入得:-m 2+2 m + m=0. 解得:m1=0(舍去), m2=3.·································································· 9分 |
据专家权威分析,试题“(9分)已知二次函数的图象与x轴相交于A、B两点(A左B右),与y轴相交..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|