题文
(本小题满分12分)已知:抛物线的对称轴为与轴交于两点,与轴交于点其中、
(1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标. (3)若点是线段上的一个动点(不与点O、点C重合).过点D作交轴于点连接、.设的长为,的面积为.求与之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
解:(1)由题意得 解得 ∴此抛物线的解析式为 (2)连结、.因为的长度一定,所以周长最小,就是使最小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点. 设直线的表达式为则解得∴此直线的表达式为 把代入得 ∴点的坐标为 (3)存在最大值 理由:∵即 ∴ ∴即 ∴ 连结
= = ∵ ∴当时, |
据专家权威分析,试题“(本小题满分12分)已知:抛物线的对称轴为与轴交于两点,与轴交于点..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|