题文
已知:抛物线经过坐标原点. (1)求抛物线的解析式和顶点B的坐标; (2)设点A是抛物线与轴的另一个交点,试在轴上确定一点P,使PA+PB最短,并求出点P的坐标; (3)过点A作AC∥BP交轴于点C,求到直线AP、AC、CP距离相等的点的坐标. |
题型:解答题 难度:中档
答案
解:(1)∵ 抛物线经过坐标原点, ∴ ="0." 解得. ∵ ,∴ ∴ …1分 ∴ . ………………………….2分 (2)令,得=0, 解得. ∴ ………..3分 ∴点A关于轴的对称点的坐标为. 联结,直线与轴的交点即为所求点P.
可求得直线的解析式:. ∴ ……………………………4分 (3)到直线AP、AC、CP距离相等的点有四个. 如图,由勾股定理得,所以△PAC为等边三角形. 易证轴所在直线平分∠PAC,BP是△PAC的一个外角的平分线.作∠PCA的平分线,交轴于点,交过A点的平行线于y轴的直线于点,作△PAC的∠PCA相邻外角的平分线,交于点,反向延长C交轴于点.可得点就是到直线AP、AC、CP距离相等的点.可证△AP 、△AC、 △PC均为等边三角形.可求得:①,所以点M1的坐标为;…………5分 ②,所以点M2的坐标为;………………………………....6分③点M3与点M2关于x轴对称,所以点M3的坐标为;………………..…..7分 ④点与点A关于y轴对称,所以点的坐标为. 综上所述,到直线AP、AC、CP距离相等的点的坐标分别为,,,.…………………………….. 8分 |
据专家权威分析,试题“已知:抛物线经过坐标原点.(1)求抛物线的解析式和顶点B的坐标;(2..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|