题文
.(12分)如图1:⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD、ED交直线AB于点F、M。
(1)求∠COA和∠FDM的度数;(3分) (2)求证:△FDM∽△COM;(4分) (3)如图2:若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有△FDM∽△COM?证明你的结论。(5分)
|
题型:解答题 难度:中档
答案
(1)∵AB为直径,CE⊥AB
∴=,CG=EG 在Rt△COG中, ∵OG=OC ∴∠OCG=300,∠COA=600 又∵∠CDE的度数 =弧CAE的度数 =的度数 =∠COA的度数=600 ∴∠FDM=1800-∠CDE=1200 (2)证明: ∵∠COM=1800-∠COA=1200 ∴∠COM=∠FDM 在Rt△CGM和Rt△EGM中 ∵ ∴Rt△CGM≌Rt△EGM ∴∠GMC=∠GME 又∠DMF=∠GME ∴∠OMC=∠DMF ∴△FDM∽△COM (3)解:结论仍成立。 ∵∠FDM=1800-∠CDE ∴∠CDE的度数=弧CAE的度数=的度数=∠COA的度数 ∴∠FDM=1800-∠COA=∠COM ∵AB为直径,CE⊥AB; ∴在Rt△CGM和Rt△EGM中 ∵ ∴Rt△CGM≌Rt△EGM ∴∠GMC=∠GME ∴△FDM∽△COM |
据专家权威分析,试题“.(12分)如图1:⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|