题文
.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m)满足函数关系y=-(x-12)+144(0<x<24),则该矩形面积的最大值为_____________.
|
题型:填空题 难度:中档
答案
本题考查二次函数最大(小)值的求法. 解答:解:由函数关系y=-(x-12)2+144(0<x<24)可知, ∵二次函数的二次项系数即-1<0, ∴当x=12时,y最大值=144. 点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单. |
据专家权威分析,试题“.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|