题文
(本题满分10分) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、C(0,—3)两点,与x轴交于另一点B. 小题1:(1)求这条抛物线所对应的函数关系式; 小题2:(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标; 小题3:(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
|
题型:解答题 难度:中档
答案
小题1:(1)设抛物线的解析式为y =ax2+bx+c,则有: 解得:,所以抛物线的解析式为y =x2-2x-3 小题2:(2)令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0). 设直线BC的解析式为y =kx+b, 则,解得,所以直线解析式是y =x-3. 当x=1时,y=-2.所以M点的坐标为(1,-2). 小题3:(3)方法一:要使∠PBC=90°,则直线PC过点C,且与BC垂直, 又直线BC的解析式为y =x-3, 所以直线PC的解析式为y =-x-3,当x=1时,y=-4, 所以P点坐标为(1,-4). 方法二:设P点坐标为(1,y),则PC2=12+(-3-y)2, BC2=32+32;PB2=22+y2 由∠PBC=90°可知△PBC是直角三角形,且PB为斜边,则有PC2+BC2=PB2. 所以:[12+(-3-y)2]+[32+32]=22+y2;解得y =-4, 所以P点坐标为(1,-4) |
据专家权威分析,试题“(本题满分10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|