题文
将抛物线c1:沿x轴翻折,得到抛物线c2,如图所示.
(1)请直接写出抛物线c2的表达式; (2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E. ①当B、D是线段AE的三等分点时,求m的值; ②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
(1)(2)①2,1/2,②是矩形,m=1 |
(1)抛物线c2的表达式为. (2)抛物线c1:与x轴的两个交点为(-1,0)、(1,0),顶点为. 抛物线c2:与x轴的两个交点也为(-1,0)、(1,0),顶点为. 抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB=2. 抛物线c2向右平移m个单位长度后,顶点N的坐标为,与x轴的两个交点为、.所以AE=(1+m)-(-1-m)=2(1+m). ①B、D是线段AE的三等分点,存在两种情况: 情形一,如图2,B在D的左侧,此时,AE=6.所以2(1+m)=6.解得m=2. 情形二,如图3,B在D的右侧,此时,AE=3.所以2(1+m)=3.解得.
图2 图3 图4 ②如果以点A、N、E、M为顶点的四边形是矩形,那么AE=MN=2OM.而OM2=m2+3,所以4(1+m)2=4(m2+3).解得m=1(如图4). (1)根据抛物线的对称性解出 (2)求出抛物线c1向左平移m个单位长度后,顶点M的坐标和与x轴的两个交点,以及AB长;求出抛物线c2向右平移m个单位长度后,顶点N的坐标和与x轴的两个交点,以及AE长;①B、D是线段AE的三等分点,存在两种情况:B在D的左侧,B在D的右侧,分别解得m,②如果以点A、N、E、M为顶点的四边形是矩形,那么AE=MN=2OM.而OM2=m2+3,所以4(1+m)2=4(m2+3).解得m=1 |
据专家权威分析,试题“将抛物线c1:沿x轴翻折,得到抛物线c2,如图所示.(1)请直接写出抛..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|