如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。小题1:当时,求点A的坐标及BC-九年级数学 |
|
[db:作者] 2019-05-20 00:00:00 互联网 |
|
题文
如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。 小题1:当时,求点A的坐标及BC的长; 小题2:当时,连结CA,问为何值时? 小题3:过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并定出相对应的点E坐标;若不存在,请说明理由。 |
题型:解答题 难度:中档
答案
小题1:当m=3时,y=-x²+6x 令y=0,得-x²+6x=0, ∴∴A(6,0) 当x=1时,y=5,∴B(1,5) 又∵抛物线的对称轴为直线x=3, 又∵B、C关于对称轴对称,∴BC="4" (4分) 小题2:过点C作CH⊥x轴于点H(如图1)
由已知得∠ACP=∠BCH=90° ∴∠ACH=∠PCB 又∵∠AHC=∠PBC=90°, ∴△ACH∽△PCB
∵抛物线的 对称轴为直线x=m,其中, 又∵B,C关于对称轴对称, ∴BC=2(m-1) ∵B(1,2 m-1),P(1,m), ∴BP= m-1, 又∵A(2m,0),C(2m-1,2m-1), ∴H(2m-1,0) ∴AH=1,CH=2m-1 ∴(8分) 小题3:∵B,C不重合,∴m≠1, (Ⅰ)当m>1时,BC=2(m-1) PM="m," BP= m-1. (ⅰ)若点E在x轴上(如图2),
∵∠CPE=90°, ∴∠MPE+∠BPC=∠MPE+∠MEP =90° ∴∠MEP=∠BPC 又∵∠PME=∠CBP=90°,PC=EP ∴△BPC≌△MEP ∴BC=PM, ∴2(m-1)=m ∴m=2 此时点E的坐标是(2,0) (ⅱ)若点E在y轴上(如图3)
过点P作PN⊥y轴于点N, 易证△BPC≌△NPE, ∴BP=NP=OM=1, ∴ m-1=1, ∴m=2, 此时点E的坐标是(0,4) (Ⅱ)当0<m<1时, BC=2(m-1),PM=m BP= m-1. (ⅰ) 若点E在x轴上(如图4),
易证△PBC≌△MEP, ∴BC=PM 2(m-1)=m ∴m= 此时点E的坐标是(,0) (ⅱ)若点E在y轴上(如图5)
过点P作PN⊥y轴于点N, 易证△BPC≌△NPE, ∴BP=NP=OM=1, ∴ 1-m =1, ∴m=0,(∵m>0,舍去) 综上所述,当m=2时,点E的坐标是(2,0)或(0,4); 当m=时,点E的坐标是(,0)(14分) |
据专家权威分析,试题“如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|
|
http://www.00-edu.com/ks/shuxue/2/117/2019-05-20/1142681.html十二生肖十二星座
|