题文
如图1,已知直线y=kx与抛物线交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度; (2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由; (3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个? |
题型:解答题 难度:中档
答案
(1)y="2x," (2)线段QM与线段QN的长度之比是一个定值2(3)当时,E点只有1个,当时,E点有2个 |
解:(1)把点A(3,6)代入y="kx" 得;6=3k,即k=2。 ∴y=2x。 ∴。 (2)线段QM与线段QN的长度之比是一个定值, 理由如下: 如图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H. ①当QH与QM重合时,显然QG与QN重合, 此时。 ②当QH与QM不重合时, ∵QN⊥QM,QG⊥QH不妨设点H,G分别在x、y轴的正半轴上, ∴∠MQH=∠GQN。 又∵∠QHM=∠QGN=90°,∴△QHM∽△QGN。∴。 当点P、Q在抛物线和直线上不同位置时,同理可得。 ∴线段QM与线段QN的长度之比是一个定值。 (3)如图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R。 ∵∠AOD=∠BAE,∴AF=OF。 ∴OC=AC=。 ∵∠ARO=∠FCO=90°,∠AOR=∠FOC, ∴△AOR∽△FOC。∴。∴OF=。 ∴点F(,0)。 设点B(x,),过点B作BK⊥AR于点K,则△AKB∽△ARF。 ∴,即。 解得x1=6,x2=3(舍去)。∴点B(6,2)。 ∴BK=6﹣3=3,AK=6﹣2=4。∴AB=5。 在△ABE与△OED中,∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB。 ∴∠ABE=∠DEO。 ∵∠BAE=∠EOD,∴△ABE∽△OED。 设OE=x,则AE=﹣x (), 由△ABE∽△OED得,即。 ∴。 ∴顶点为。 如图3, 当时,OE=x=,此时E点有1个; 当时,任取一个m的值都对应着两个x值,此时E点有2个. ∴当时,E点只有1个,当时,E点有2个。 (1)利用待定系数法求出直线y=kx的解析式,根据A点坐标用勾股定理求出线段OA的长度。 (2)如图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H,构造相似三角形△QHM与△QGN,将线段QM与线段QN的长度之比转化为相似三角形的相似比,即为定值.需要注意讨论点的位置不同时,这个结论依然成立。 (3)由已知条件角的相等关系∠BAE=∠BED=∠AOD,可以得到△ABE∽△OED。在相似三角形△ABE与△OED中,运用线段比例关系之前需要首先求出AB的长度,如图2,可以通过构造相似三角形,或者利用一次函数(直线)的性质求得AB的长度。设OE=x,则由相似边的比例关系可以得到m关于x的表达式,这是一个二次函数.借助此二次函数图象(如图3),可见m在不同取值范围时,x的取值(即OE的长度,或E点的位置)有1个或2个。这样就将所求解的问题转化为分析二次函数的图象与性质问题。 |
据专家权威分析,试题“如图1,已知直线y=kx与抛物线交于点A(3,6).(1)求直线y=kx的解析..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|