题文
如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴与轴相交于点M. (1)求抛物线的解析式和对称轴; (2)设点P为抛物线()上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的 正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求 出点N的坐标;若不存在,请你说明理由. |
题型:解答题 难度:中档
答案
(1)根据已知条件可设抛物线的解析式为, 把点A(0,4)代入上式得:, ∴, ∴抛物线的对称轴是:. (2)由已知,可求得P(6,4).
提示:由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中,所以,MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,在Rt△AOM中,,因为抛物线对称轴过点M,所以在抛物线的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6;故以A、O、M、P为顶点的四边形的四条边长度分别是四个连续的正整数3、4、5、6成立, 即P(6,4). ⑶法一:在直线AC的下方的抛物线上存在点N,使△NAC面积最大.
设N点的横坐标为,此时点N(,过点N作NG∥轴交AC于G;由点A(0,4)和点C(5,0)可求出直线AC的解析式为:;把代入得:,则G, 此时:NG=-(), =. ∴ ∴当时,△CAN面积的最大值为, 由,得:,∴N(, -3). 法二:提示:过点N作轴的平行线交轴于点E,作CF⊥EN于点F,则 |
(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x-1)(x-5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴; (2)由已知,可求得P(6,4),由题意可知以A、O、M、P为顶点的四边形有两条边AO=4、OM=3,又知点P的坐标中x>5,所以MP>2,AP>2;因此以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6的一种情况,则分析求解即可求得答案; (3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案. |
据专家权威分析,试题“如图,在平面直角坐标系中,已知抛物线经过点A(0,4),B(1,0),..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|