如图1,矩形,为原点,点在上,把沿折叠,使点落在边上的点处,A、D坐标分别为和,抛物线过点.(1)求点的坐标及该抛物线的解析式;(2)如图2,矩形的长、宽一定,点沿(1)中的抛-九年级数学 |
|
[db:作者] 2019-05-21 00:00:00 零零社区 |
|
题文
如图1,矩形,为原点,点在上,把沿折叠,使点落在边上的点处,A、D坐标分别为和,抛物线过点. (1)求点的坐标及该抛物线的解析式; (2)如图2,矩形的长、宽一定,点沿(1)中的抛物线滑动,在滑动过程中轴,且在的下方,当点横坐标为-1时,点位于轴上方且距离轴个单位.当矩形在滑动过程中被轴分成上下两部分的面积比为2:3时,求点的坐标; (3)如图3,动点同时从点出发,点以每秒3个单位长度的速度沿线段运动,点以每秒8个单位长度的速度沿折线按的路线运动,当中的其中一点停止运动时,另一点也停止运动.设同时从点出发秒时,的面积为.求与的函数关系式,并写出的取值范围. |
题型:解答题 难度:中档
答案
解:(1) 由矩形得 ,, 由沿翻折得到,得 由勾股定理得: 得 , 又均在上代入得 (2)当时, ,此时 又由距离轴上方个单位, 得 矩形的长为8. 设在下滑过程中交轴分别于两点. 则由题意知: 即 故的纵坐标为,设,则 得 或 (3)①当时,此时在上,在上. ②当时,此时在上,在上.则 过作于 则 得
|
(1)本题可根据折叠的性质进行求解.根据折叠的性质可知:CD=BC=OA,可在直角三角形OCD中用勾股定理求出OC的长,即可求出C、B的坐标,将这两点坐标代入抛物线中即可求出抛物线的解析式. (2)先根据x=-1时,P的纵坐标求出PS的长即矩形的长,然后根据矩形被x轴分成上3下2两部分,可求出此时P点的纵坐标,代入抛物线中即可求出P点的坐标. (3)一:本题要分三种情况进行讨论: ①当0≤t≤1时,此时N在OC上.M在OD上.可用t表示出OM、ON的长,进而可求出S、t的函数关系式. ②当1<t≤2时,此时N在CD上,M在OD上.过N作x轴的垂线,在构建的直角三角形中,用ND的长求出△OMN的高,而后同①. ③当2<t≤2411 时,此时,N、M均在CD上.先用t表示出NM的长,然后过O作OH⊥CD于H,在直角三角形OCH(或ODH)中,用OC的长和∠OCD的正弦值求出△OMN中NM边上的高. 二:根据一的函数的性质及自变量的取值范围即可求出S的最大值及对应的t的值. |
据专家权威分析,试题“如图1,矩形,为原点,点在上,把沿折叠,使点落在边上的点处,A、..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|
|
http://www.00-edu.com/ks/shuxue/2/117/2019-05-21/1142831.html十二生肖十二星座
|