题文
已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连结DP,作CN⊥DP于点M,且交直线AB于点N,连结OP,ON。(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2) (1)请从图1,图2中任选一图证明下面结论: ①BN=CP: ②OP=ON,且OP⊥ON (2) 设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系。
|
题型:解答题 难度:中档
答案
(1)证明:如图1, ①∵四边形ABCD是正方形, ∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB。 ∵DP⊥CN,∴∠CMD=∠DOC=90°。 ∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°。∴∠CPD=∠CNB。 ∵DC∥AB,∴∠DCN=∠CNB=∠CPD。 ∵在△DCP和△CBN中,∠DCP=∠CBN,∠CPD=∠BNC,DC=BC, ∴△DCP≌△CBN(AAS)。∴CP=BN。 ②∵在△OBN和△OCP中,OB=OC,∠OCP=∠OBN, CP="BN" , ∴△OBN≌△OCP(SAS)。∴ON=OP,∠BON=∠COP。 ∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°。 ∴ON⊥OP。 (2)解:∵AB=4,四边形ABCD是正方形,∴O到BC边的距离是2。 图1中,, 图2中,。 ∴以O、P、B、N为顶点的四边形的面积y与x的函数关系是: 。 |
正方形的性质,三角形外角性质,全等三角形的判定和性质,两线垂直的判定,多边形的面积的分解,函数解析式的确定,分段函数,点到直线的距离。 【分析】(1)对于图1,证明线段相等,一般情况下找全等。根据BN,CP的分布情况 可以观察△CNB和△DPC,然后证明两三角形全等。也可以观察△CAN和△DBP,证明AN=BP,从而有BN=CP。 对于图2,证明如下: ①∵ABCD为正方形,AC,BD为对角线,∴∠DCP=90º。 ∵CM⊥DP, ∴∠PCM=∠PDC。∴∠PDB=∠CAN。 又∵∠DPB=∠ANC,BD=AC,∴△PDB≌△NCA(ASA)。 ∴PB=AN,DP=CN。∴CP=BN。 ②∵∠PDB=∠CAN,OD=OC, CP=BN,∴△PDO≌△NCO(SAS)。 ∴OP=ON,∠DOP=∠CON。 ∵∠DOC=90º,∴∠PON=∠NOC+POC=∠DOP+∠POC=∠DOC=90º。∴OP⊥ON。 (2)求以O、P、B、N为顶点的四边形的面积,则要把四边形分解为两个三角形去解决问题。图1中,S四边形OPBN=S△OBN+S△BOP,,;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可。 |
据专家权威分析,试题“已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|