题文
已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8). (1)求m的值,并将平移后的抛物线解析式写成的形式; (2)将平移后的抛物线在x轴下方的部分沿x轴翻折到x轴上方,与平移后的抛物线没有变化的部分构成一个新的图象. 请写出这个图象对应的函数y的解析式,同时写出该函数在≤时对应的函数值y的取值范围; (3)设一次函数,问是否存在正整数使得(2)中函数的函数值时,对应的x的值为,若存在,求出的值;若不存在,说明理由.
|
题型:解答题 难度:中档
答案
解:(1)由题意可得 又点(1,8)在图象上 ∴ ∴ m=2 ∴ (2) 当时, (3)不存在 理由:当y=y3且对应的-1<x<0时,
∴ , 且得 ∴ 不存在正整数n满足条件 |
(1)根据抛物线y1=x2+4x+1的图象向上平移m个单位,可得y2=x2+4x+1+m,再利用又点(1,8)在图象上,求出m即可; (2)根据函数解析式画出图象,即可得出函数大小分界点; (3)根据当y=y3且对应的﹣1<x<0时,x2+4x+3=nx+3,得出n取值范围即可得出答案. |
据专家权威分析,试题“已知抛物线的图象向上平移m个单位()得到的新抛物线过点(1,8).(..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|