题文
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处. (1)求点C的坐标; (2)若抛物线经过C、A两点,求此抛物线的解析式; (3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
解:(1)过C作CH⊥OA于H, ∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,∴OA=。 ∵将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处, ∴OC=OA=,∠AOC=60°。 ∴OH=,CH="3" 。 ∴C的坐标是(,3)。 (2)∵抛物线经过C(,3)、A(,0)两点, ∴,解得。∴此抛物线的解析式为 (3)存在。 ∵的顶点坐标为(,3),即为点C。 MP⊥x轴,设垂足为N,PN=t, ∵∠BOA=300,所以ON= ∴P() 作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E。 把代入得:。 ∴ M(,),E(,)。 同理:Q(,t),D(,1)。 要使四边形CDPM为等腰梯形,只需CE=QD, 即,解得:,(舍去)。 ∴ P点坐标为(,)。 ∴ 存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,)。 (1)过C作CH⊥OA于H,根据折叠得到OC=OA=4,∠A0C=60°,求出OH和CH即可。 (2)把C(,3)、A(,0)代入得到方程组,求出方程组的解即可。 (3)如图,根据等腰梯形的判定,只要CE=QD即可,据此列式求解。 |
据专家权威分析,试题“已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|