题文
如图,已知平面直角坐标系中,点,为两动点,其中,连结,. (1)求证:; (2)当时,抛物线经过两点且以轴为对称轴,求抛物线对应的二次函数的关系式; (3)在(2)的条件下,设直线交轴于点,过点作直线交抛物线于两点,问是否存在直线,使?若存在,求出直线对应的函数关系式;若不存在,请说明理由. |
题型:解答题 难度:中档
答案
(1)作轴于点,轴于点, 点坐标分别为,, 又,易证,. (2)由(1)得,,又,, 即.又 坐标为坐标为, 易得抛物线解析式为. (3)直线为,且与轴交于点, 假设存在直线交抛物线于两点,且使,如图所示, 则有,作轴于点, 轴于点,
在抛物线上,设坐标为, 则,易证,, ,, 点坐标为点在抛物线上, ,解得,坐标为, 坐标为, 易得直线为. 根据抛物线的对称性可得直线另解为. |
(1)作BC⊥x轴于C点,AD⊥x轴于D点.因为,可得∠BOC+∠AOD=90°.因为BC⊥x,所以易证∠∠AOD=∠OBC,从而得△CBO∽△DOA,利用线段比求出mn. (2)由(1)得m与BO的关系式,根据勾股定理得BO与n的关系式,从而建立m与n的一个关系式,然后利用(1)中mn=-6,求得m、n的值.然后得A,B的坐标以及抛物线解析式. (3)利用待定系数法求出直线AB解析式,从而求出F点的坐标.过作PM⊥y轴于M点,QN⊥y轴于N点,根据同底等高的三角形面积比等于高的比得PM:QN=1:3.易证△PMF∽△QNF,设坐标为,易得QN、NF、ON的长,进而表示出点Q的坐标.因为点Q在二次函数上,所以求得t的值.从而得直线的解析式,根据对称性得到第二条直线的解析式. |
据专家权威分析,试题“如图,已知平面直角坐标系中,点,为两动点,其中,连结,.(1)求..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|