题文
如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ; (2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少? (3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明) |
题型:解答题 难度:中档
答案
(1)证∠APE=∠ADQ,∠AEP=∠AQD. (2)注意到△APE∽△ADQ与△PDE∽△ADQ,及S△PEF=, 得S△PEF==. ∴当,即P是AD的中点时,S△PEF取得最大值. (3)作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点. |
(1)证得∠APE=∠ADQ,∠AEP=∠AQD,即可得到△APE∽△ADQ; (2)先由△APE∽△ADQ与△PDE∽△ADQ,及S△PEF=, 得S△PEF==,根据二次函数的性质即可结果; (3)作A关于直线BC的对称点A′,连DA′交BC于Q,则这个点Q就是使△ADQ周长最小的点,此时Q是BC的中点. |
据专家权威分析,试题“如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|