题文
如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.
(1)求这个抛物线的解析式; (2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少? (3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标. |
题型:解答题 难度:中档
答案
(1)y=﹣x2+x+2(2)当t=2时,MN有最大值4(3)D点坐标为(0,6),(0,﹣2)或(4,4) |
解:(1)∵分别交y轴、x轴于A、B两点, ∴A、B点的坐标为:A(0,2),B(4,0)。 将x=0,y=2代入y=﹣x2+bx+c得c=2; 将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=。 ∴抛物线解析式为:y=﹣x2+x+2。 (2)如图1,
设MN交x轴于点E,则E(t,0),BE=4﹣t。 ∵, ∴ME=BE?tan∠ABO=(4﹣t)× =2﹣t。 又∵N点在抛物线上,且xN=t,∴yN=﹣t2+t+2。 ∴。 ∴当t=2时,MN有最大值4。 (3)由(2)可知,A(0,2),M(2,1),N(2,5). 如图2,
以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形。 (i)当D在y轴上时,设D的坐标为(0,a), 由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2, 从而D为(0,6)或D(0,﹣2)。 (ii)当D不在y轴上时,由图可知D为D1N与D2M的交点, 由D1(0,6),N(2,5)易得D1N的方程为y=x+6; 由D2(0,﹣2),M(2,1)D2M的方程为y=x﹣2。 由两方程联立解得D为(4,4)。 综上所述,所求的D点坐标为(0,6),(0,﹣2)或(4,4)。 (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式。 (2)求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值。 (3)明确D点的可能位置有三种情形,如图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标。 |
据专家权威分析,试题“如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|