题文
如图,一次函数y=-2x+t的图象与x轴,y轴分别交于点C,D. (1)求点C,点D的坐标; (2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点, 若以点C,点D为直角顶点的△PCD与△OCD相似。求t的值及对应的点P的坐标.
|
题型:解答题 难度:中档
答案
(1)令一次函数解析式中y=0,求出对应x的值,确定出C的坐标,令x=0,求出对应y的值,确定出D的坐标即可; (2)由(1)得出的C与D的坐标,求出OC及OD的长,在直角三角形OCD中,利用勾股定理表示出CD,以CD为直角边的△PCD与△OCD相似,过P作PM⊥y轴,PN⊥x轴,如图中红线所示,以D为直角顶点的△PCD与△OCD相似,此时∠CDP=90°,分两种情况考虑:当PD:DC=OC:OD=1:2时,由表示出的DC得到PD的长,根据P在二次函数图象上,设P的坐标为(x,),表示出PM与MD,在直角三角形PMD中,利用勾股定理列出关系式,记作①,表示出CN,在直角三角形PCD与直角三角形PCN中,分别利用勾股定理表示出,将各自的值代入得到关系式,记作②,联立①②可得出t与x的值,进而确定出此时P的坐标;若DC:PD=OC:OD=1:2时,如图所示,同理可以求得t与x的值,确定出此时P的坐标,综上,得到所有满足题意t的值及对应P的坐标. (1)C坐标为(,0),D坐标为(0,t); (2)t=1时点(2,2)、时、时. |
据专家权威分析,试题“如图,一次函数y=-2x+t的图象与x轴,y轴分别交于点C,D.(1)求点..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|