题文
如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.
(1)求该二次函数的关系式; (2)若点A的坐标是(6,-3),求△ANO的面积; (3)当点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题: ①证明:∠ANM=∠ONM; ②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由. |
题型:解答题 难度:偏易
答案
(1) (2)12 (3)相似三角形的基本知识推出该角度的相等,不能 |
试题分析:(1)∵二次函数图象的顶点为P(4,-4),∴设二次函数的关系式为。 又∵二次函数图象经过原点(0,0),∴,解得。 ∴二次函数的关系式为,即。(2分) (2)设直线OA的解析式为,将A(6,-3)代入得,解得。 ∴直线OA的解析式为。 把x=4代入得y=-2。∴M(4,-2)。 又∵点M、N关于点P对称,∴N(4,-6),MN=4。 ∴。(3分) (3)①证明:过点A作AH⊥于点H,,与x轴交于点D。则 设A(), 则直线OA的解析式为。 则M(),N(),H()。 ∴OD=4,ND=,HA=,NH=。 ∴。 ∴。∴∠ANM=∠ONM。(2分) ②不能。理由如下:分三种情况讨论: 情况1,若∠ONA是直角,由①,得∠ANM=∠ONM=450, ∴△AHN是等腰直角三角形。∴HA=NH,即。 整理,得,解得。 ∴此时,点A与点P重合。故此时不存在点A,使∠ONA是直角。 情况2,若∠AON是直角,则。 ∵ , ∴。 整理,得,解得,。 ∴此时,故点A与原点或与点P重合。故此时不存在点A,使∠AON是直角。 情况3,若∠NAO是直角,则△AMN∽△DMO∽△DON,∴。 ∵OD=4,MD=,ND=,∴。 整理,得,解得。 ∴此时,点A与点P重合。故此时不存在点A,使∠ONA是直角。 综上所述,当点A在对称轴右侧的二次函数图象上运动时,△ANO不能成为直角三角形。(3分) 点评:在解题时要能灵运用二次函数的图象和性质求出二次函数的解析式,利用数形结合思想解题是本题的关键. |
据专家权威分析,试题“如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|