如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。(1)求抛物线的解析式;(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合)-九年级数学 |
|
[db:作者] 2019-05-21 00:00:00 零零社区 |
|
题文
如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A、B(A在B的右边)。
(1)求抛物线的解析式; (2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由; (3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。 |
题型:解答题 难度:偏易
答案
试题分析:(1)已知,当x=2时,抛物线的最小值为-1,因此抛物线的顶点坐标为(2,-1);可用顶点式来设抛物线的解析式,然后将C的坐标代入即可求出抛物线的解析式. (2)由于EF∥OC,那么∠FED=45°,因此要使三角形EFD与三角形COA相似,只有两种情况:当D为直角顶点时,∠EDF=90°,由于D是AC中点,而FD⊥AC,三角形AOC又是个等腰直角三角形,因此DF正好在∠COA的平分线上,即DF在直线y=x上,此时可先求出直线AC的函数关系式,然后联立抛物线的解析式求出F的坐标,由于E、F的横坐标相同,将F的横坐标代入AC所在的直线的解析式中即可求出E点的坐标. (3)当F为直角顶点时,∠EFD=90°,那么DF与三角形AOC的中位线在同一直线上,即DF所在的直线的解析式为y=2,然后可根据(2)的方法求出p点的坐标. (1)由题意可设抛物线的关系式为 y=a(x-2)2-1 因为点C(0,3)在抛物线上 所以3=a(0-2)2-1,即a=1 所以,抛物线的关系式为; (2)令y=0,即x2-4x+3=0, 得点A(3,0),B(1,0),线段AC的中点为D(,) 直线AC的函数关系式为y=-x+3 因为△OAC是等腰直角三角形, 所以,要使△DEF与△AOC相似,△DEF也必须是等腰直角三角形. 由于EF∥OC,因此∠DEF=45°, 所以,在△DEF中只可能以点D、F为直角顶点. 当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为y=
当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点, 因此,DF所在直线过原点O,其关系式为y=x.
当∠DFE=90°时,E1,当∠EDF=90°时,E2; (3)
点评:解题的关键是要注意的是(3)中在不确定△EDF的直角顶点的情况下要分类进行讨论,不要漏解. |
据专家权威分析,试题“如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|
|
http://www.00-edu.com/ks/shuxue/2/117/2019-05-21/1144351.html十二生肖十二星座
|