题文
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元). (1)求y与x之间的函数关系式; (2)当销售单价定为多少元时,每天的利润最大?最大利润是多少? (3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元? |
题型:解答题 难度:中档
答案
试题分析: (1); (2)当x=30元时,最大利润y=200元 . (3)当x=25时,既能保证销售量最大,又可以每天获得150元的利润. 点评:此题将用待定系数法求二次函数解析式、动点问题和最小值问题相结合,有较大的思维跳跃,考查了同学们的应变能力和综合思维能力,是一道好题. |
据专家权威分析,试题““天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|