题文
某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件玩具的售价定为多少元时,月销售利润恰为2520元? (3)每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少? |
题型:解答题 难度:中档
答案
(1),0<x≤10且x为正整数;(2)32元;(3)定为36元或37元时,每个月可获得最大利润.最大的月利润是2720元. |
试题分析:(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式. (2)把y=2520时代入y=-10x2+130x+2300中,求出x的值即可. (3)把y=-10x2+130x+2300化成顶点式,求得当x=6.5时,y有最大值,再根据0<x≤10且x为正整数,分别计算出当x=6和x=7时y的值即可. (1)依题意得 自变量x的取值范围是0<x≤10且x为正整数; (2)当y=2520时,得(元) 解得x1=2,x2=11(不合题意,舍去) 当x=2时,30+x=32(元) 所以,每件玩具的售价定为32元时,月销售利润恰为2520元; (3) ∵a=-10<0 ∴当x=6.5时,y有最大值为2722.5 ∵0<x≤10(1≤x≤10也正确)且x为正整数 ∴当x=6时,30+x=36,y=2720(元) 当x=7时,30+x=37,y=2720(元) 所以,每件玩具的售价定为36元或37元时,每个月可获得最大利润.最大的月利润是2720元. 点评:二次函数的应用是初中数学的重点,是中考常见题,一般难度较大,需熟练掌握. |
据专家权威分析,试题“某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|