题文
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是( )
|
题型:单选题 难度:中档
答案
试题分析:二次函数y=ax2+bx+c(a≠0)的图象如图所示,从图形来看二次函数与X轴有两个交点,那么方程有两个不相等的实数根,所以,即2-4ac>0,所以①正确;从图象来看,二次函数的图象开口向上,所以a>0,对称轴在y轴的右边,所以,解得b<0;二次函数y=ax2+bx+c与y轴的交点在其负半轴,那么,即c<0,所以abc>0,所以②正确;从图象来看,二次函数与X轴有两个交点,一个交点在-2、-1之间,即在-2这点二次函数的函数值大于0,所以,即,因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,即,那么2a=-b,所以-2b=4a,所以,因此③8a+c>0正确;因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,-2点关于对称轴x=-1的对称点是3,所以二次函数在-3点的函数值也大于0,所以9a+3b+c<0,所以全部正确 点评:本题考查二次函数,解答本题需要掌握二次函数的对称轴,开口方向及与X轴的交点情况等等 |
据专家权威分析,试题“已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4a..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|