题文
某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少? |
题型:解答题 难度:中档
答案
(1) (2)故应将200元 (3)当时,y取最大值5000元 |
试题分析:(1)假设每台冰箱降价50x元,每台冰箱的售价为2400-50x,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,则每天能售出冰箱的台数=8+4x;商场每天销售这种冰箱的利润是y=(2400-50x-2000)(8+4x)= (2)商场要想在这种冰箱销售中每天盈利4800元,则=4800,整理得,解得;又要使百姓得到实惠,所以每台冰箱应降价==200 (3)由(1)知商场每天销售这种冰箱的利润是y元与x之间的函数表达式== = 当x-3=0,即x=3时,y取得最大值,最大值为5000,所以每台冰箱应降价=150时商场每天销售这种冰箱的利润最高 点评:本题考查一元二次方程,二次函数,要求考生掌握一元二次方程的解法,掌握用配方法求二次函数的最值 |
据专家权威分析,试题“某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|