题文
如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。
(1)求证:CD是⊙M的切线; (2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标; (3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。 |
题型:解答题 难度:偏难
答案
解:(1)证明:连接CM,
∵OA 为⊙M直径,∴∠OCA=90°。∴∠OCB=90°。 ∵D为OB中点,∴DC=DO。∴∠DCO=∠DOC。 ∵MO=MC,∴∠MCO=∠MOC。 ∴。 又∵点C在⊙M上,∴DC是⊙M的切线。 (2)∵A点坐标(5,0),AC=3 ∴在Rt△ACO中,。 ∴,∴,解得 。 又∵D为OB中点,∴。∴D点坐标为(0,)。 连接AD,设直线AD的解析式为y=kx+b,则有 解得。 ∴直线AD为。 ∵二次函数的图象过M(,0)、A(5,0), ∴抛物线对称轴x=。 ∵点M、A关于直线x=对称,设直线AD与直线x=交于点P, ∴PD+PM为最小。 又∵DM为定长,∴满足条件的点P为直线AD与直线x=的交点。 当x=时,。 ∴P点的坐标为(,)。 (3)存在。 ∵, 又由(2)知D(0,),P(,), ∴由,得,解得yQ=±。 ∵二次函数的图像过M(0,)、A(5,0), ∴设二次函数解析式为, 又∵该图象过点D(0,),∴,解得a=。 ∴二次函数解析式为。 又∵Q点在抛物线上,且yQ=±。 ∴当yQ=时,,解得x=或x=; 当yQ=时,,解得x=。 ∴点Q的坐标为(,),或(,),或(,)。 |
试题分析:(1)连接CM,可以得出CM=OM,就有∠MOC=∠MCO,由OA为直径,就有∠ACO=90°,D为OB的中点,就有CD=OD,∠DOC=∠DCO,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论。 (2)根据条件可以得出和,从而求出OB的值,根据D是OB的中点就可以求出D的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD交对称轴于P,先求出AD的解析式就可以求出P的坐标。 (3)根据,求出Q的纵坐标,求出二次函数解析式即可求得横坐标。 |
据专家权威分析,试题“如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|