题文
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分) (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分) (3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分) |
题型:解答题 难度:中档
答案
试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,根据利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据函数解析式,利用一次函数的性质求出最低成本即可. 试题解析:(1)由题意得出: , ∵, ∴当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:, 解这个方程得:x1=30,x2=40. ∴李明想要每月获得2000元的利润,销售单价应定为30元或40元. (3)∵,∴抛物线开口向下. ∴当30≤x≤40时,W≥2000. ∵x≤32,∴当30≤x≤32时,W≥2000. 设成本为P(元),由题意,得:, ∵k=200<0,∴P随x的增大而减小. ∴当x=32时,P最小=3600. 答:想要每月获得的利润不低于2000元,每月的成本最少为3600元. |
据专家权威分析,试题“某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|