题文
如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.
(1)求点A的坐标; (2)若△OBC是等腰三角形,求此抛物线的函数关系式. |
题型:解答题 难度:中档
答案
(1)(﹣2,0);(2)y=x2+x或y=x2+x. |
试题分析:(1)过点D作DF⊥x轴于点F,由抛物线的对称性可知OF=AF,则2AF+AE=4①,由DF∥BE,得到△ADF∽△ABE,根据相似三角形对应边成比例得出=,即AE=2AF②,①与②联立组成二元一次方程组,解出AE=2,AF=1,进而得到点A的坐标; (2)先由抛物线过原点(0,0),设此抛物线的解析式为y=ax2+bx,再根据抛物线过原点(0,0)和A点(﹣2,0),求出对称轴为直线x=﹣1,则由B点横坐标为﹣4得出C点横坐标为2,BC=6.再由OB>OC,可知当△OBC是等腰三角形时,可分两种情况讨论:①当OB=BC时,设B(﹣4,y1),列出方程,解方程求出y1的值,将A,B两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式;②当OC=BC时,设C(2,y2),列出方程,解方程求出y2的值,将A,C两点坐标代入y=ax2+bx,运用待定系数法求出此抛物线的解析式. 试题解析:(1)如图,过点D作DF⊥x轴于点F. 由题意,可知OF=AF,则2AF+AE=4①. ∵DF∥BE, ∴△ADF∽△ABE, ∴=,即AE=2AF②, ①与②联立,解得AE=2,AF=1, ∴点A的坐标为(﹣2,0); (2)∵抛物线过原点(0,0), ∴可设此抛物线的解析式为y=ax2+bx. ∵抛物线过原点(0,0)和A点(﹣2,0), ∴对称轴为直线x==﹣1, ∵B、C两点关于直线x=﹣1对称,B点横坐标为﹣4, ∴C点横坐标为2, ∴BC=2﹣(﹣4)=6. ∵抛物线开口向上, ∴∠OAB>90°,OB>AB=OC, ∴当△OBC是等腰三角形时,分两种情况讨论: ①当OB=BC时,设B(﹣4,y1), 则16+=36,解得y1=±2(负值舍去). 将A(﹣2,0),B(﹣4,2)代入y=ax2+bx, 得,解得. ∴此抛物线的解析式为y=x2+x; ②当OC=BC时,设C(2,y2), 则4+=36,解得y2=±4(负值舍去). 将A(﹣2,0),C(2,4)代入y=ax2+bx, 得,解得. ∴此抛物线的解析式为y=x2+x. 综上可知,若△OBC是等腰三角形,此抛物线的函数关系式为y=x2+x或y=x2+x.
|
据专家权威分析,试题“如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义 考点名称:二次函数的图像 考点名称:二次函数的最大值和最小值 考点名称:求二次函数的解析式及二次函数的应用
|